Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)

Author:

Hložek R.ORCID,Malz A. I.ORCID,Ponder K. A.ORCID,Dai M.ORCID,Narayan G.ORCID,Ishida E. E. O.ORCID,Jr T. Allam,Bahmanyar A.,Bi X.,Biswas R.ORCID,Boone K.ORCID,Chen S.,Du N.ORCID,Erdem A.,Galbany L.ORCID,Garreta A.,Jha S. W.ORCID,Jones D. O.ORCID,Kessler R.ORCID,Lin M.,Liu J.,Lochner M.ORCID,Mahabal A. A.ORCID,Mandel K. S.ORCID,Margolis P.,Martínez-Galarza J. R.ORCID,McEwen J. D.,Muthukrishna D.ORCID,Nakatsuka Y.,Noumi T.,Oya T.,Peiris H. V.ORCID,Peters C. M.,Puget J. F.,Setzer C. N.ORCID,Siddhartha ,Stefanov S.,Xie T.,Yan L.,Yeh K.-H.,Zuo W.

Abstract

Abstract Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.

Funder

U.S. Department of Energy

National Aeronautics and Space Administration

Royal Swedish Academy of Sciences

Knut och Alice Wallenbergs Stiftelse

EuroBasque

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

EC ∣ European Regional Development Fund

EC ∣ Horizon Europe ∣ Excellent Science ∣ HORIZON EUROPE Marie Sklodowska-Curie Actions

Agencia Estatal de Investigacíon

2019 Ramón y Cajal program

Centro Superior de Investigaciones Científicas

Unidad de Excelencia María de Maeztu

PIE project

Chandra Science Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NEural Engine for Discovering Luminous Events (NEEDLE): identifying rare transient candidates in real time from host galaxy images;Monthly Notices of the Royal Astronomical Society;2024-05-29

2. Cosmological prediction of the CSST Ultra Deep Field Type Ia supernova photometric survey;Monthly Notices of the Royal Astronomical Society;2024-04-25

3. Reduction of supernova light curves by vector Gaussian processes;Monthly Notices of the Royal Astronomical Society;2023-09-02

4. Personalized anomaly detection using deep active learning;RAS Techniques and Instruments;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3