The R2D2 Deep Neural Network Series Paradigm for Fast Precision Imaging in Radio Astronomy

Author:

Aghabiglou AmirORCID,Chu Chung SanORCID,Dabbech ArwaORCID,Wiaux YvesORCID

Abstract

Abstract Radio-interferometric imaging entails solving high-resolution high-dynamic-range inverse problems from large data volumes. Recent image reconstruction techniques grounded in optimization theory have demonstrated remarkable capability for imaging precision, well beyond CLEAN’s capability. These range from advanced proximal algorithms propelled by handcrafted regularization operators, such as the SARA family, to hybrid plug-and-play (PnP) algorithms propelled by learned regularization denoisers, such as AIRI. Optimization and PnP structures are however highly iterative, which hinders their ability to handle the extreme data sizes expected from future instruments. To address this scalability challenge, we introduce a novel deep-learning approach, dubbed “Residual-to-Residual DNN series for high-Dynamic-range imaging” or in short R2D2. R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of deep neural networks (DNNs) taking the previous iteration’s image estimate and associated data residual as inputs. It thus takes a hybrid structure between a PnP algorithm and a learned version of the matching pursuit algorithm that underpins CLEAN. We present a comprehensive study of our approach, featuring its multiple incarnations distinguished by their DNN architectures. We provide a detailed description of its training process, targeting a telescope-specific approach. R2D2's capability to deliver high precision is demonstrated in simulation, across a variety of image and observation settings using the Very Large Array. Its reconstruction speed is also demonstrated: with only a few iterations required to clean data residuals at dynamic ranges up to 105, R2D2 opens the door to fast precision imaging. R2D2 codes are available in the BASPLib (https://basp-group.github.io/BASPLib/) library on GitHub.

Funder

UKRI ∣ Engineering and Physical Sciences Research Council

UKRI ∣ Science and Technology Facilities Council

The University of Edinburgh and EPSRC

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical Tourism and Health Gateways in International Health Market Places;Advances in Electronic Government, Digital Divide, and Regional Development;2024-08-30

2. Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging;RAS Techniques and Instruments;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3