A Bayesian Analysis of Physical Parameters for 783 Kepler Close Binaries: Extreme-mass-ratio Systems and a New Mass Ratio versus Period Lower Limit

Author:

Kobulnicky Henry A.ORCID,Molnar Lawrence A.ORCID,Cook Evan M.,Henderson Lauren E.ORCID

Abstract

Abstract Contact binary star systems represent the long-lived penultimate phase of binary evolution. Population statistics of their physical parameters inform an understanding of binary evolutionary pathways and end products. We use light curves and new optical spectroscopy to conduct a pilot study of ten (near) contact systems in the long-period (P > 0.5 days) tail of close binaries in the Kepler field. We use PHOEBE light-curve models to compute Bayesian probabilities on five principal system parameters. Mass ratios and third-light contributions measured from spectra agree well with those inferred from the light curves. Pilot study systems have extreme mass ratios q < 0.32. Most are triples. Analysis of the unbiased sample of 783 0.15 d < P < 2 days (near) contact binaries results in 178 probable contact systems, 114 probable detached systems, and 491 ambiguous systems for which we report best-fitting and 16th-/50th-/84th-percentile parameters. Contact systems are rare at periods P > 0.5 days, as are systems with q > 0.8. There exists an empirical mass ratio lower limit q min ( P ) ≈ 0.05–0.15 below which contact systems are absent, supporting a new set of theoretical predictions obtained by modeling the evolution of contact systems under the constraints of mass and angular momentum conservation. Premerger systems should lie at long periods and near this mass ratio lower limit, which rises from q = 0.044 for P = 0.74 days to q = 0.15 at P = 2.0 days. These findings support a scenario whereby nuclear evolution of the primary (more massive) star drives mass transfer to the primary, thus moving systems toward extreme q and larger P until the onset of the Darwin instability at q min precipitates a merger.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3