Exploring γ-Ray Flares in the Long-term Light Curves of CTA 102 at GeV Energies

Author:

Geng Xiongfei,Ding NanORCID,Cao Gang,Liu Yang,Bao Biwen,Chidiac CelineORCID,Kushwaha PankajORCID,Shah ZahirORCID,Zhang Zhijie,Yang XiongbangORCID,Wen Tao,Jiang ZejunORCID,Zhang Li,Zeng WeiORCID,Wu Xiaohui,Qin Yao,Zhou Meng,Dai BenzhongORCID

Abstract

Abstract Blazar CTA 102 experienced an intense multiwavelength activity phase from 2015 to 2018; in particular, an unprecedented outburst was observed from 2016 October to 2017 February. In this work, we extract a 7 day binned γ-ray light curve from 2008 August to 2018 March in the energy range 0.1–300 GeV and identify three main outbursts. We study in detail the short-timescale variability of these three outbursts via an exponential function with parameterized rise and decay timescales. The obtained shortest rise and decay timescales are 0.70 ± 0.05 hr and 0.79 ± 0.27 hr, respectively. Based on these variability timescales, the physical parameters of the flaring region (e.g., the minimum Doppler factor and the emission region size) are constrained. The short-timescale flares exhibit a symmetric temporal profile within the error bars, implying that the rise and decay timescales are dominated by the light-crossing timescale or by disturbances caused by dense plasma blobs passing through the standing shock front in the jet region. We also find that the best-fitting form of the γ-ray spectra during the flare period is a power law with an exponential cutoff. The derived jet parameters from the spectral behavior and the temporal characteristics of the individual flares suggest that the γ-ray emission region is located upstream of the radio core. The extreme γ-ray flare of CTA 102 is likely to have been caused by magnetic reconnection.

Funder

National Key research and development program

National Science Foundation of China

Science Foundation of Yunnan

Basic research Program of Yunnan Province

Research Foundation of the Education Bureau of Yunnan

ARIES Aryabhatta Fellowship

Special Basic Cooperative Research Programs of Yunnan

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3