A Robust Young Stellar Object Identification Method Based on Deep Learning

Author:

Tan 谈 Lei 磊ORCID,Liu 柳 Zhicun 志存ORCID,Wang 王 Xiaolong 小龙ORCID,Mei 梅 Ying 盈ORCID,Wang 王 Feng 锋ORCID,Deng 邓 Hui 辉ORCID,Liu 刘 Chao 超ORCID

Abstract

Abstract Young stellar objects (YSOs) represent the earliest stage in the process of star formation, offering insights that contribute to the development of models elucidating star formation and evolution. Recent advancements in deep-learning techniques have enabled significant strides in identifying special objects within vast data sets. In this paper, we present a YSO identification method based on deep-learning principles and spectra from the LAMOST. We designed a structure based on a long short-term memory network and a convolutional neural network and trained different models in two steps to identify YSO candidates. Initially, we trained a model to detect stellar spectra featuring the Hα emission line, achieving an accuracy of 98.67%. Leveraging this model, we classified 10,495,781 stellar spectra from LAMOST, yielding 76,867 candidates displaying a Hα emission line. Subsequently, we developed a YSO identification model, which achieved a recall rate of 95.81% for YSOs. Utilizing this model, we further identified 35,021 YSO candidates from the Hα emission-line candidates. Following cross validation, 3204 samples were identified as previously reported YSO candidates. We eliminated samples with low signal-to-noise ratios and M dwarfs by using the equivalent widths of the N ii and He i emission lines and visual inspection, resulting in a catalog of 20,530 YSO candidates. To facilitate future research endeavors, we provide the obtained catalogs of Hα emission-line star candidates and YSO candidates along with the code used for training the model.

Funder

The National SKA Program of China

Guangzhou Science and Technology Funds

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3