Implementation of Cosmic Ray Energy Spectrum (CRESP) Algorithm in PIERNIK MHD Code. I. Spectrally Resolved Propagation of Cosmic Ray Electrons on Eulerian Grids

Author:

Ogrodnik Mateusz A.ORCID,Hanasz MichałORCID,Wóltański DominikORCID

Abstract

Abstract We present an efficient algorithm to follow spectral evolution of cosmic rays (CR) coupled with an MHD system on Eulerian grids. The algorithm is designed for studies of CR energy spectrum evolution in MHD simulations of a galactic interstellar medium. The base algorithm for CR transport relies on the two-moment piece-wise power-law method, known also as coarse-grained momentum finite volume (CGMV), for solving the Fokker–Planck CR transport equation, with a low number of momentum bins extending over several decades of the momentum coordinate. We propose an extension of the CGMV with a novel feature that allows momentum boundaries to change in response to CR momentum gains or losses near the extremes of the population distribution. Our extension involves a special treatment of momentum bins containing spectral cutoff. Contrary to the regular bins of fixed width, those bins have variable width, and their outer edges coincide with spectral cutoffs. The cutoff positions are estimated from the particle number density and energy density in the outer bins for an assumed small value of an additional parameter representing the smallest physically significant level of CR spectral energy density. We performed a series of elementary tests to validate the algorithm and demonstrated, whenever possible, that results of the test simulations correspond, with a reasonable accuracy, to the results of analogous analytical solutions. In a more complex test of the galactic CR-driven wind problem, we obtained results consistent with expectations regarding the effects of advection, diffusion, adiabatic, and synchrotron cooling of a CR population.

Funder

Uniwersytet Mikolaja Kopernika w Toruniu

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3