Salt Distribution from Freezing Intrusions in Ice Shells on Ocean Worlds: Application to Europa

Author:

Naseem MariamORCID,Neveu MarcORCID,Howell SamuelORCID,Lesage ElodieORCID,Melwani Daswani MohitORCID,Vance Steven D.ORCID

Abstract

Abstract Several icy moons and dwarf planets appear to have hosted subsurface liquid water. Liquid water intruding upwards into the icy outer shells of these worlds freezes, forming ice and (from ocean solutes) non-ice solids. Here, we model concentrated aqueous solutions below 273 K to simulate the compositional evolution of freezing spherical intrusions. Starting solutions are based on five previously reported compositional end members for Europa’s ocean. For moderate-pH end members dominated by chloride, sulfate, and/or carbonate, the solids formed include Ca-, Mg-, and Na-sulfates and -carbonates, as well as Na- and K-chlorides. For silica-rich, high-pH end members, abundant amorphous silica forms with, potentially, similarly abundant NaOH and KOH. We further develop a new numerical model to compute the spatial distribution of the formed solids and residual brine as freezing progresses. If non-ice solids settle to the bottom, their deposits tend to have stacked hourglass shapes, widening each time the crystallization temperature of a new solid is reached. We discuss the applicability of this model to vertical fractures and global freezing of a subsurface ocean. These results inform (i) how compositional heterogeneities may affect the thermophysical properties of ice shells, which in turn influence convective and cryovolcanic transport, (ii) the compatibility of brine pockets with physicochemical conditions suitable for microbial life, and (iii) possible measurements of compositional heterogeneities within ice shells by spacecraft such as NASA’s Europa Clipper and ESA’s JUICE missions. The methodology developed here is applicable to other ice-covered ocean worlds.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3