Surface Properties of Near-Sun Asteroids

Author:

Holt Carrie E.ORCID,Knight Matthew M.ORCID,Kelley Michael S. P.ORCID,Ye QuanzhiORCID,Hsieh Henry H.ORCID,Snodgrass ColinORCID,Fitzsimmons AlanORCID,Richardson Derek C.ORCID,Sunshine Jessica M.ORCID,Eisner Nora L.ORCID,Gustaffson AnnikaORCID

Abstract

Abstract Near-Earth asteroids (NEAs) with small perihelion distances reach subsolar temperatures of ≥1000 K. They are hypothesized to undergo “supercatastrophic” disruption, potentially caused by near-Sun processes such as thermal cracking, spin-up, meteoroid impacts, and subsurface volatile release, all of which are likely to cause surface alteration, which may change the spectral slope of the surface. We attempted to observe 35 of the 53 known near-Sun asteroids with q ≤ 0.15 au from 2017 January to 2020 March to search for trends related to near-Sun processes. We report the optical colors and spectral slopes of 22 objects that we successfully observed and the measured rotation periods for three objects. We find the distribution of colors to be overall bluer than the color distribution of NEAs, though there is a large overlap. We attribute the large scatter to unknown dynamical histories and compositions for individual objects, as well as competing surface altering processes. We also investigated potential correlations between colors and other properties (e.g., perihelion distance, Tisserand parameter, rotation period) and searched for evidence of activity. Finally, we have compiled all known physical and dynamical properties of these objects, including probabilistic source regions and dwell times with q ≤ 0.15 au.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3