Abstract
Abstract
The complex dynamics of the Venus atmosphere produces a periodic mass redistribution pattern that creates a time-variable modulation of the gravity field of Venus. This gravity signal depends on the net transport of mass across the globe and on the response of the solid body to the normal loading of its crust imparted by the atmosphere. In this work, we explore the possibility of measuring this phenomenon with VERITAS, a NASA Discovery-class mission. By simulating the gravity science experiment, we explore the possibility of measuring the response of Venus to the atmospheric loading, parametrized by the loading Love numbers (
k
l
′
), and assess the dependence of these parameters on fundamental interior structure properties. Using the most recent models of Venus’ interior, we compute the Venus Love numbers in a compressible viscoelastic setting and compare them with the predicted uncertainty of the VERITAS measurements. We show that VERITAS will measure
k
2
′
at the 4% level and that this measurement could possibly help to distinguish between different equally plausible interior structure models, especially allowing us to distinguish different rheological laws. We also show that a measurement campaign such as the VERITAS gravity science investigation has the potential of measuring
k
2
′
not only at the loading forcing frequency, but also at the tidal frequency, ultimately providing a way to probe the response of the planet at different forcing periods.
Funder
NASA ∣ Goddard Space Flight Center
Agenzia Spaziale Italiana
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献