VALENTInE: A Concept for a New Frontiers–Class Long-duration In Situ Balloon-based Aerobot Mission to Venus

Author:

Arredondo AniciaORCID,Hodges AmoréeORCID,Abrahams Jacob N. H.ORCID,Bedford Candice C.ORCID,Boatwright Benjamin D.ORCID,Buz Jennifer,Cantrall Clayton,Clark Joanna,Erwin AndrewORCID,Krishnamoorthy SiddharthORCID,Magaña LizethORCID,McCabe Ryan M.ORCID,McIntosh E. Carrie,Noviello Jessica L.ORCID,Pellegrino Marielle,Ray Christine,Styczinski Marshall J.ORCID,Weigel Peter

Abstract

Abstract Described here is a concept for a variable-altitude aerobot mission to Venus developed as part of the 2020 NASA Planetary Science Summer School in collaboration with NASA Jet Propulsion Laboratory. The Venus Air and Land Expedition: a Novel Trailblazer for in situ Exploration (VALENTInE) is a long-duration New Frontiers–class mission to Venus in alignment with the goals recommended by the 2013 Planetary Science Decadal Survey. VALENTInE would have five science objectives: (1) determine the driving force of atmospheric superrotation, (2) determine the source of D/H and noble gas inventory, (3) determine the properties that govern how light is reflected within the lower cloud later, (4) determine whether the tesserae are felsic, and (5) determine whether there is evidence of a recent dynamo preserved in the rock record. The proposed mission concept has a total duration of 15 Earth days and would float at an altitude of 55 km, along with five dips to a lower altitude of 45 km to study Venus’s lower atmosphere. The instrument payload allows for measurements of the atmosphere, surface, and interior of Venus and includes six instruments: an atmospheric weather suite, a mass spectrometer, a multispectral imager, a near-infrared spectrometer, light detection and ranging, and a magnetometer. Principle challenges included a limitation caused by battery lifetime and low technology readiness levels for aerobots that can survive the harsh conditions of Venus’s atmosphere. This preliminary mission was designed to fit within an assumed New Frontiers 5 (based on inflated New Frontiers 4) cost cap.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meteors May Masquerade as Lightning in the Atmosphere of Venus;Journal of Geophysical Research: Planets;2023-08-30

2. Exploring Venus: next generation missions beyond those currently planned;Frontiers in Astronomy and Space Sciences;2023-05-18

3. Leading-Edge Vortex Lift (LEVL) Sample Probe for Venusian Atmosphere;Aerospace;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3