Abstract
Abstract
The New Horizons spacecraft encountered the Kuiper Belt object (KBO) Arrokoth (486958), originally designated as 2014 MU69 and formerly called “Ultima Thule,” on 2019 January 01. At 43.3 au from the Sun and 44.4 au from Earth, this was the most distant spacecraft reconnaissance of a solar system body to date. The Radio Science Experiment (REX) on New Horizons performed radiometry measurements of the KBO's thermal emission at λ = 4.2 cm in two observation slots, one before (dayside) and one after (nightside) the point of closest approach. Owing to the small size of the target, the intensity of the thermal emission was expected to be only marginally detectable. The KBO was not detected on approach because of unexpectedly large variations in the REX system temperature. A brightness temperature T
b
= 29 ± 5 K was derived for the nightside observation, considerably less than the predicted equilibrium temperature of ∼50 K derived for Arrokoth on the dayside. A model explaining this day−night contrast is used to constrain the global values of emissivity, thermal inertia, and electrical skin depth of the KBO. In particular, models with small values of thermal inertia and small values of electrical skin depth are excluded. Relatively high values of the effective radio emissivity (E
eff > 0.8) provide better agreement with the REX observation.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献