Abstract
Abstract
The Chemistry and Mineralogy X-ray diffraction (XRD) instrument aboard the Curiosity rover consistently identifies amorphous material at Gale Crater, which is compositionally variable, but often includes elevated sulfur and iron, suggesting that amorphous ferric sulfate (AFS) may be present. Understanding how desiccating ferric sulfate brines affect the spectra of Martian material analogs is necessary for interpreting complex/realistic reaction assemblages. Visible and near-infrared reflectance (VNIR), mid-infrared attenuated total reflectance (MIR, FTIR-ATR), and Raman spectra, along with XRD data are presented for basaltic glass, hematite, gypsum, nontronite, and magnesite, each at three grain sizes (<25, 25–63, and 63–180 μm), mixed with ferric sulfate (+/−NaCl), deliquesced, then rapidly desiccated in 11% relative humidity or via vacuum. All desiccated products are partially or completely XRD amorphous; crystalline phases include starting materials and trace precipitates, leaving the bulk of the ferric sulfate in the amorphous fraction. Due to considerable spectral masking, AFS detectability is highly dependent on spectroscopic technique and minerals present. This has strong implications for remote and in situ observations of Martian samples that include an amorphous component. AFS is only identifiable in VNIR spectra for magnesite, nontronite, and gypsum samples; hematite and basaltic glass samples appear similar to pure materials. Sulfate features dominate Raman spectra for nontronite and basaltic glass samples; the analog material dominates Raman spectra of hematite and gypsum samples. MIR data are least affected by masking, but basaltic glass is almost undetectable in MIR spectra of those mixtures. NaCl produces similar FTIR-ATR and Raman features, regardless of analog material.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献