A Spectroscopic Study of Mars-analog Materials with Amorphous Sulfate and Chloride Phases: Implications for Detecting Amorphous Materials on the Martian Surface

Author:

Hopkins Reed J.ORCID,Sklute Elizabeth C.ORCID,Dyar M. DarbyORCID,Rogers A. DeanneORCID,Clark Roger N.ORCID,McKeegan Rilla

Abstract

Abstract The Chemistry and Mineralogy X-ray diffraction (XRD) instrument aboard the Curiosity rover consistently identifies amorphous material at Gale Crater, which is compositionally variable, but often includes elevated sulfur and iron, suggesting that amorphous ferric sulfate (AFS) may be present. Understanding how desiccating ferric sulfate brines affect the spectra of Martian material analogs is necessary for interpreting complex/realistic reaction assemblages. Visible and near-infrared reflectance (VNIR), mid-infrared attenuated total reflectance (MIR, FTIR-ATR), and Raman spectra, along with XRD data are presented for basaltic glass, hematite, gypsum, nontronite, and magnesite, each at three grain sizes (<25, 25–63, and 63–180 μm), mixed with ferric sulfate (+/−NaCl), deliquesced, then rapidly desiccated in 11% relative humidity or via vacuum. All desiccated products are partially or completely XRD amorphous; crystalline phases include starting materials and trace precipitates, leaving the bulk of the ferric sulfate in the amorphous fraction. Due to considerable spectral masking, AFS detectability is highly dependent on spectroscopic technique and minerals present. This has strong implications for remote and in situ observations of Martian samples that include an amorphous component. AFS is only identifiable in VNIR spectra for magnesite, nontronite, and gypsum samples; hematite and basaltic glass samples appear similar to pure materials. Sulfate features dominate Raman spectra for nontronite and basaltic glass samples; the analog material dominates Raman spectra of hematite and gypsum samples. MIR data are least affected by masking, but basaltic glass is almost undetectable in MIR spectra of those mixtures. NaCl produces similar FTIR-ATR and Raman features, regardless of analog material.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and development of a stand-off Raman brassboard (SDU-RRS) for the spectroscopic study of planetary materials;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3