Abstract
Abstract
Recent observations of the long-period comet C/2016 R2 (PanSTARRS; hereafter R2) indicate an unusually high N2/CO abundance ratio, typically larger than ∼0.05, and at least 2–3 times higher than the one measured in 67P/Churyumov–Gerasimenko. Another striking compositional feature of this comet is its heavy depletion in H2O (H2O/CO ∼ 0.32%), compared to other comets. Here we investigate the formation circumstances of a generic comet whose composition reproduces these two key features. We first envisage the possibility that this comet agglomerated from clathrates, but we find that such a scenario does not explain the observed low water abundance. We then alternatively investigate the possibility that the building blocks of R2 agglomerated from grains and pebbles made of pure condensates via the use of a disk model describing the radial transport of volatiles. We show that N2/CO ratios reproducing the value estimated in this comet can be found in grains condensed in the vicinity of the CO and N2 ice lines. Moreover, high CO/H2O ratios (>100 times the initial gas-phase value) can be found in grains condensed in the vicinity of the CO ice line. If the building blocks of a comet assembled from such grains, they should present N2/CO and CO/H2O ratios consistent with the measurements made in R2’s coma. Our scenario indicates that R2 formed in a colder environment than the other comets that share more usual compositions. Our model also explains the unusual composition of the interstellar comet 2l/Borisov.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献