A Simple Condition for Sustained Super-Eddington Black Hole Growth

Author:

Lawrence Johnson JarrettORCID,Upton Sanderbeck Phoebe R.

Abstract

Abstract One of the most pressing questions in cosmology is how the black holes (BHs) powering quasars at high redshift grow to supermassive scales within a billion years of the Big Bang. Here we show that sustained super-Eddington accretion can be achieved for BHs with Eddington fractions f Edd ≳ 2/ϵ, where ϵ is the efficiency with which radiation is generated in the accretion process. In this regime, the radiation carries too little momentum to halt the accretion flow and the infalling gas traps the radiation. The BH growth then proceeds unimpeded until the gas supply is exhausted, in contrast to accretion at lower rates, which is limited by the radiation generated in the accretion process. The large gas supply available in massive high-redshift quasar host galaxies may be readily accreted onto seed BHs via this supply-limited mode of accretion, providing an explanation for how such supermassive BHs are assembled in the early universe. This sustained super-Eddington growth may also explain the short lifetimes inferred for the H ii regions surrounding high-redshift quasars, if the bulk of the BH growth occurs without the associated radiation escaping to ionize the intergalactic medium. It furthermore implies that a population of obscured rapidly growing BHs may be difficult to detect, perhaps explaining why so few quasars with Eddington fractions higher than a few have been observed. Finally, this simple condition for sustained super-Eddington growth can easily be implemented in cosmological simulations that can be used to assess in which environments it occurs.

Funder

LANL LDRD

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3