The GALAH Survey: A New Sample of Extremely Metal-poor Stars Using a Machine-learning Classification Algorithm

Author:

Hughes Arvind C. N.ORCID,Spitler Lee R.ORCID,Zucker Daniel B.ORCID,Nordlander ThomasORCID,Simpson JeffreyORCID,Da Costa Gary S.ORCID,Ting Yuan-SenORCID,Li ChengyuanORCID,Bland-Hawthorn JossORCID,Buder SvenORCID,Casey Andrew R.ORCID,De Silva Gayandhi M.ORCID,D’Orazi ValentinaORCID,Freeman Ken C.ORCID,Hayden Michael R.ORCID,Kos Janez,Lewis Geraint F.ORCID,Lin Jane,Lind KarinORCID,Martell Sarah L.ORCID,Schlesinger Katharine J.ORCID,Sharma SanjibORCID,Zwitter TomažORCID

Abstract

Abstract Extremely metal-poor (EMP) stars provide a valuable probe of early chemical enrichment in the Milky Way. Here we leverage a large sample of ∼600,000 high-resolution stellar spectra from the GALAH survey plus a machine-learning algorithm to find 54 candidates with estimated [Fe/H] ≤−3.0, six of which have [Fe/H] ≤−3.5. Our sample includes ∼20% main-sequence EMP candidates, unusually high for EMP star surveys. We find the magnitude-limited metallicity distribution function of our sample is consistent with previous work that used more complex selection criteria. The method we present has significant potential for application to the next generation of massive stellar spectroscopic surveys, which will expand the available spectroscopic data well into the millions of stars.

Funder

Australian Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3