The On-axis Jetted Tidal Disruption Event AT2022cmc: X-Ray Observations and Broadband Spectral Modeling

Author:

Yao YuhanORCID,Lu WenbinORCID,Harrison FionaORCID,Kulkarni S. R.ORCID,Gezari SuviORCID,Guolo MuryelORCID,Cenko S. BradleyORCID,Ho Anna Y. Q.ORCID

Abstract

Abstract AT2022cmc was recently reported as the first on-axis jetted tidal disruption event (TDE) discovered in the last decade, and the fourth on-axis jetted TDE candidate known so far. In this work, we present NuSTAR hard X-ray (3–30 keV) observations of AT2022cmc, as well as soft X-ray (0.3–6 keV) observations obtained by NICER, Swift, and XMM-Newton. Our analysis reveals that the broadband X-ray spectra can be well described by a broken power law with f ν ν −0.5 (f ν ν −1) below (above) the rest-frame break energy of E bk ∼ 10 keV at the observer frame t obs = 7.8 and 17.6 days since discovery. At t obs = 36.2 days, the X-ray spectrum is consistent with either a single power law or a broken power law. By modeling the spectral energy distribution from radio to hard X-ray across the three NuSTAR observing epochs, we find that the submillimeter/radio emission originates from external shocks at large distances ≳1017 cm from the black hole, the UV/optical light comes from a thermal envelope with radius ∼1015 cm, and the X-ray emission is consistent with synchrotron radiation powered by energy dissipation at intermediate radii within the (likely magnetically dominated) jet. We constrain the bulk Lorentz factor of the jet to be of the order 10–100. Our interpretation differs from the model proposed by Pasham et al. where both the radio and X-rays come from the same emitting zone in a matter-dominated jet. Our model for the jet X-ray emission has broad implications on the nature of relativistic jets in other sources such as gamma-ray bursts.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3