Radio-only and Radio-to-far-ultraviolet Spectral Energy Distribution Modeling of 14 ULIRGs: Insights into the Global Properties of Infrared Bright Galaxies

Author:

Dey SubhrataORCID,Goyal ArtiORCID,Małek KatarzynaORCID,Díaz-Santos TanioORCID

Abstract

Abstract We present detailed spectral energy distribution (SED) modeling of 14 local ultraluminous infrared galaxies (ULIRGs) with outstanding photometric data from the literature covering the ultraviolet–infrared (FIR) and radio bands (∼50 MHz to ∼30 GHz). We employ the CIGALE SED fitting code to model the ultraviolet–FIR–radio SED. For the radio-only SED modeling, we use the UltraNest package, leveraging its nested sampling algorithm. Combining the results from our previous study on 11 luminous infrared galaxies (LIRGs), we discuss the global astrophysical properties of a sample of 25 starburst galaxies (z < 0.5). Their radio spectra are frequently characterized by bends and turnovers, with no indication of ULIRGs exhibiting more complicated SEDs than LIRGs despite showing more signs of interactions. Including radio measurements in the CIGALE modeling constrained the dust luminosity and star formation rate (SFR) estimates by more than 1 order of magnitude better than previously reported for starburst galaxies. We show that total and nonthermal radio luminosity at 1.4 and 4.8 GHz frequencies can be good estimators of recent SFRs for all LIRGs and those ULIRGS with an insignificant influence of active galactic nuclei. A weaker but still significant correlation is observed between radio SFRs at 1.4 GHz and old (averaged over 100 Myr) SFRs based on SED modeling, indicative of multiple episodes of starburst activity during their lifetime. The thermal radio luminosity at 4.8 GHz is a better tracer of recent star formation than the thermal luminosity at 1.4 GHz. Statistically, our modeled nonthermal radio spectral indices do not significantly correlate with redshift, stellar mass, SFR, specific SFR, and dust mass.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3