The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way–like Galaxies

Author:

Mao Yao-YuanORCID,Geha MarlaORCID,Wechsler Risa H.ORCID,Weiner BenjaminORCID,Tollerud Erik J.ORCID,Nadler Ethan O.ORCID,Kallivayalil NityaORCID

Abstract

Abstract We present the Stage II results from the ongoing Satellites Around Galactic Analogs (SAGA) Survey. Upon completion, the SAGA Survey will spectroscopically identify satellite galaxies brighter than M r,o  = −12.3 around 100 Milky Way (MW) analogs at z ∼ 0.01. In Stage II, we have more than quadrupled the sample size of Stage I, delivering results from 127 satellites around 36 MW analogs with an improved target selection strategy and deep photometric imaging catalogs from the Dark Energy Survey and the Legacy Surveys. We have obtained 25,372 galaxy redshifts, peaking around z = 0.2. These data significantly increase spectroscopic coverage for very low redshift objects in 17 < r o  < 20.75 around SAGA hosts, creating a unique data set that places the Local Group in a wider context. The number of confirmed satellites per system ranges from zero to nine and correlates with host galaxy and brightest satellite luminosities. We find that the number and luminosities of MW satellites are consistent with being drawn from the same underlying distribution as SAGA systems. The majority of confirmed SAGA satellites are star-forming, and the quenched fraction increases as satellite stellar mass and projected radius from the host galaxy decrease. Overall, the satellite quenched fraction among SAGA systems is lower than that in the Local Group. We compare the luminosity functions and radial distributions of SAGA satellites with theoretical predictions based on cold dark matter simulations and an empirical galaxy–halo connection model and find that the results are broadly in agreement.

Funder

National Science Foundation

Heising-Simons Foundation

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3