Geodesic Model of HF QPOs Tested for Black Holes in Spacetimes Reflecting the Effect of Surrounding Dark Matter

Author:

Stuchlík Zdeněk,Vrba Jaroslav

Abstract

Abstract Using the simple but robust model of a shell of dark matter (DM) around a Schwarzschild black hole (BH), represented by the mass ratio of the shell and BH ΔM/M, the shell extension Δr s and its inner radius r s, we study the influence of DM on the spacetime structure and geodesic motion, and provide a classification of the BH+DM shell spacetimes according to the properties of the stable circular geodesics governing Keplerian disks. We focus our attention on the epicyclic motion around circular geodesics that can be related to observational phenomena in X-ray radiation from Keplerian accretion disks, assumed to be influenced by the DM shell only gravitationally. We give the frequencies of the orbital and epicyclic motions and discuss their properties in terms of the parameters governing the DM shell. Using the frequencies in relevant variants of the standard geodesic model of high-frequency quasiperiodic oscillations (HF QPOs), we test the role of DM by fitting the HF QPO data from some microquasars and active galactic nuclei with supermassive BHs where no variant of the geodesic model applied in the standard vacuum BH background is able to explain the data. We thus provide a robust review of the applicability of the geodesic model of HF QPOs, and also provide limits on the amount of DM around a BH. We demonstrate that the geodesic model could be well applied to most observations of active galactic nuclei, with strong restrictions on the amount of invisible matter around BHs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3