Spectra of V1405 Cas at the Very Beginning Indicate a Low-mass ONeMg White Dwarf Progenitor

Author:

Taguchi KentaORCID,Maeda KeiichiORCID,Maehara HiroyukiORCID,Tajitsu AkitoORCID,Yamanaka MasayukiORCID,Arai AkiraORCID,Isogai KeisukeORCID,Shibata Masaaki,Tampo YusukeORCID,Kojiguchi Naoto,Nogami DaisakuORCID,Kato Taichi

Abstract

Abstract The lowest possible mass of ONeMg white dwarfs (WDs) has not been clarified despite its importance in the formation and evolution of WDs. We tackle this issue by studying the properties of V1405 Cas (Nova Cassiopeiae 2021), which is an outlier given a combination of its very slow light-curve evolution and the recently reported neon-nova identification. We report its rapid spectral evolution in the initial phase, covering 9.88, 23.77, 33.94, 53.53, 71.79, and 81.90 hr after the discovery. The first spectrum is characterized by lines from highly ionized species, most noticeably He ii and N iii. These lines are quickly replaced by lower-ionization lines, e.g., N ii, Si ii, and O i. In addition, Al ii (6237 Å) starts emerging as an emission line at the second epoch. We perform emission-line strength diagnostics, showing that the density and temperature quickly decrease toward later epochs. This behavior, together with the decreasing velocity seen in Hα, Hβ, and He i, indicates that the initial nova dynamics is reasonably well described by an expanding fireball on top of an expanding photosphere. Interestingly, the strengths of the N iii and Al ii indicate large enhancement in abundance, pointing to a ONeMg WD progenitor as is consistent with its neon-nova classification. Given its low-mass nature inferred by the slow light-curve evolution and relatively narrow emission lines, it provides a challenge to the stellar evolution theory that predicts the lower limit of the ONeMg WD mass being ∼1.1 M .

Funder

MEXT ∣ JST ∣ ACT-X

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3