Abstract
Abstract
Both the recent 2009 and 2020 solar minima were classified as unusually quiet and characterized with unusually high galactic cosmic-ray (GCR) levels. However, unlike the trends from previous decades, in which anomalous cosmic-ray (ACR) and GCR levels strongly agreed, the ACR intensities did not reach such high, record-setting levels. This discrepancy between the behavior of GCRs and ACRs is investigated in this work by simulating the acceleration and transport of GCR and ACR oxygen under different transport conditions. After using recent observations to constrain any remaining free parameters present in the model, we show that less turbulent conditions are characterized by higher GCR fluxes and lower ACR fluxes, due to less efficient ACR acceleration at the solar wind termination shock. We offer this as an explanation for the ACR/GCR discrepancy observed during 2009 and 2020, when compared to previous solar cycles.
Funder
NASA
National Research Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献