Large Fluctuations within 1 au in Protoplanetary Disks

Author:

Chambers JohnORCID

Abstract

Abstract Protoplanetary disks are often assumed to change slowly and smoothly during planet formation. Here, we investigate the time evolution of isolated disks subject to viscosity and a disk wind. The viscosity is assumed to increase rapidly at around 900 K due to thermal ionization of alkali metals, or thermionic and ion emission from dust, and the onset of magnetorotational instability (MRI). The disks generally undergo large, rapid fluctuations for a wide range of time-averaged mass accretion rates. Fluctuations involve coupled waves in temperature and surface density that move radially in either direction through the inner 1.5 au of the disk. Two types of waves are seen with radial speeds of roughly 50 and 1000 cm s−1, respectively. The pattern of waves repeats with a period of roughly 10,000 yr that depends weakly on the average mass accretion rate. Viscous transport due to MRI is confined to the inner disk. This region is resupplied by mass flux from the outer disk driven by the disk wind. Interior to 1 au, the temperature and surface density can vary by a factor of 2–10 on timescales of years to kiloyears. The stellar mass accretion rate varies by 3 orders of magnitude on a similar timescale. This behavior lasts for at least 1 Myr for initial disks comparable to the minimum-mass solar nebula.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3