The Width, Density, and Outflow of Solar Coronal Streamers

Author:

Morgan HuwORCID,Cook Anthony C.

Abstract

Abstract Characterizing the large-scale structure and plasma properties of the inner corona is crucial to understanding the source and subsequent expansion of the solar wind and related space weather effects. Here, we apply a new coronal rotational tomography method, along with a method to narrow streamers and refine the density estimate, to COR2A/Solar Terrestrial Relations Observatory observations from a period near solar minimum and maximum, gaining density maps for heights between 4 and 8R . The coronal structure is highly radial at these heights, and the streamers are very narrow: in some regions, only a few degrees in width. The mean densities of streamers is almost identical between solar minimum and maximum. However, streamers at solar maximum contain around 50% more total mass due to their larger area. By assuming a constant mass flux, and constraints on proton flux measured by Parker Solar Probe (PSP), we estimate an outflow speed within solar minimum streamers of 50–120 kms−1 at 4R , increasing to 90–250 kms−1 at 8R . Accelerations of around 6 ms−2 are found for streamers at a height of 4R , decreasing with height. The solar maximum slow wind shows a higher acceleration to extended distances compared with solar minimum. To satisfy the solar wind speeds measured by PSP, there must be a mean residual acceleration of around 1–2 ms−2 between 8 and 40R . Several aspects of this study strongly suggest that the coronal streamer belt density is highly variable on small scales, and that the tomography can only reveal a local spatial and temporal average.

Funder

STFC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3