Abstract
Abstract
In this work, we investigate the properties of young giant planet spectra in the optical and suggest that future space-based direct imaging missions should be considering young planets as a valuable and informative science case. While young planets are dimmer in the optical than in the infrared, they can still be brighter in the optical than a mature planet of similar mass. Therefore, an instrument designed to characterize mature planets should also be suitable for high-precision photometric imaging and spectroscopy of young self-luminous planets in a wavelength range and at a contrast ratio not currently attainable from the ground. We identify known young self-luminous companions that are feasible targets for coronagraphic instrument on the Wide Field Infrared Survey Telescope (WFIRST-CGI) and compute spectra for them, including a treatment of scattering and reflected light at optical wavelengths. Using these results, we highlight potentially diagnostic spectral features that will be present in the WFIRST-CGI wavelengths. Expanding to direct imaging missions beyond WFIRST-CGI, we also use evolutionary models across a grid of masses and planet–star separations as inputs to compute spectra of hypothetical objects, exploring when reflected light may contribute to a degree comparable to that of thermal emission from the residual heat of formation.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献