Modeling Rotational Disruption of Grains and Microwave Emission from Spinning Dust in AGB Envelopes

Author:

Tram Le NgocORCID,Hoang ThiemORCID,Soam ArchanaORCID,Lesaffre Pierre,Reach William T.ORCID

Abstract

Abstract Radio observations of some asymptotic giant branch (AGB) star envelopes show excess emission at frequencies below 100 GHz that cannot be explained by thermal dust emission (hereafter anomalous microwave emission (AME)). Moreover, AGB envelopes are a common place where gas molecules condense to form nanoparticles (e.g., polycyclic aromatic hydrocarbons) and large grains. In this paper, we study whether electric dipole emission from rapidly spinning nanoparticles can reproduce the AME observed toward AGB stars. To properly model the size distribution of nanoparticles in the AGB envelope, we take into account both the increase of nanoparticles due to rotational disruption of large grains spun up by radiative torques and the decrease of the smallest nanoparticles due to rotational disruption driven by stochastic gas collisions. We then perform detailed modeling of microwave emission from rapidly spinning nanoparticles from both C-rich and O-rich AGB envelopes using the grain-size distribution constrained by rotational disruption. We find that spinning dust emission is dominant over thermal dust emission at frequencies below 100 GHz. We attempt to fit the observational data of AME using our spinning dust model and demonstrate that spinning dust can reproduce the observed AME in six AGB stars. Finally, we discuss how microwave emission from spinning dust in AGB envelopes could be observed with high-resolution upcoming radio telescopes such the Next Generation Very Large Array and Atacama Large Millimeter/submillimeter Array Band 1. This would be a major leap for understanding AGB envelopes’ formation, evolution, and internal structures of dust. Observations would help to distinguish the carrier of AME via comparisons of C-rich and O-rich stars, because polycyclic aromatic hydrocarbons (PAHs) are formed in C-rich AGB stars, while silicates are formed in O-rich stars.

Funder

NASA

National Research Foundation of Korea

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3