Things That Might Go Bump in the Night: Assessing Structure in the Binary Black Hole Mass Spectrum

Author:

Farah Amanda M.ORCID,Edelman BruceORCID,Zevin MichaelORCID,Fishbach MayaORCID,María Ezquiaga JoseORCID,Farr BenORCID,Holz Daniel E.ORCID

Abstract

Abstract Several features in the mass spectrum of merging binary black holes (BBHs) have been identified using data from the Third Gravitational Wave Transient Catalog (GWTC-3). These features are of particular interest as they may encode the uncertain mechanism of BBH formation. We assess if the features are statistically significant or the result of Poisson noise due to the finite number of observed events. We simulate catalogs of BBHs whose underlying distribution does not have the features of interest, apply the analysis previously performed on GWTC-3, and determine how often such features are spuriously found. We find that one of the features found in GWTC-3, the peak at ∼35 M , cannot be explained by Poisson noise alone: peaks as significant occur in 1.7% of catalogs generated from a featureless population. This peak is therefore likely to be of astrophysical origin. The data is suggestive of an additional significant peak at ∼10 M , though the exact location of this feature is not resolvable with current observations. Additional structure beyond a power law, such as the purported dip at ∼14 M , can be explained by Poisson noise. We also provide a publicly available package, GWMockCat, that creates simulated catalogs of BBH events with correlated measurement uncertainty and selection effects according to user-specified underlying distributions and detector sensitivities.

Funder

NSF ∣ EDU ∣ Division of Graduate Education

NSF ∣ MPS ∣ Division of Physics

National Aeronautics and Space Administration

EC ∣ Horizon Europe ∣ Excellent Science ∣ HORIZON EUROPE Marie Sklodowska-Curie Actions

Villum Fonden

EC ∣ Horizon 2020 Framework Programme

NSF ∣ MPS ∣ Division of Astronomical Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3