Hydrogen Burning of 29Si and Its Impact on Presolar Stardust Grains from Classical Novae

Author:

Downen Lori,Iliadis ChristianORCID,Champagne Art,Clegg Thomas,Coc Alain,José JordiORCID

Abstract

Abstract Presolar stardust grains found in primitive meteorites are believed to retain the isotopic composition of stellar outflows at the time of grain condensation. Therefore, laboratory measurements of their isotopic ratios represent sensitive probes for investigating open questions related to stellar evolution, stellar explosions, nucleosynthesis, mixing mechanisms, dust formation, and galactic chemical evolution. For a few selected presolar grains, classical novae have been discussed as a potential source. For SiC, silicate, and graphite presolar grains, the association is based on the observation of small N(12C)/N(13C) and N(14N)/N(15N) number abundance ratios compared to solar values, and abundance excesses in 30Si relative to 29Si, as previously predicted by models of classical novae. We report on a direct measurement of the 29Si(p,γ)30P reaction, which strongly impacts simulated δ 29Si values from classical novae. Our new experimental 29Si(p,γ)30P thermonuclear reaction rate differs from previous results by up to 50% in the classical nova temperature range (T = 100–400 MK), while the rate uncertainty is reduced by up to a factor of 3. Using our new reaction rate in Monte Carlo reaction network and hydrodynamic simulations of classical novae, we estimate δ 29Si values with much reduced uncertainties. Our results establish δ 29Si values measured in presolar grains as a sensitive probe for assessing their classical nova paternity. We also demonstrate that δ 30Si values from nova simulations are currently not a useful diagnostic tool unless the large uncertainty of the 30P(p,γ)31S reaction rate can be significantly reduced.

Funder

U.S. Department of Energy

Spanish MINECO

ChETEC-INFRA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3