Unraveling the Complexity of Dwarf Galaxy Dynamics: A Study of Binary Orbital Motions

Author:

Wang WentingORCID,Zhu LingORCID,Jing YipengORCID,Grand Robert J. J.ORCID,Li ZhaozhouORCID,Fu Xiaoting,Li LuORCID,Han JiaxinORCID,Li Ting S.ORCID,Feng FaboORCID,Frenk CarlosORCID

Abstract

Abstract We investigate the impact of binary orbital motions on the dynamical modeling of dwarf galaxies with intrinsic line-of-sight velocity dispersions ( σ v r ) of 1–9 km s−1. Using dwarf galaxies from the auriga level-2 and level-3 simulations, we apply the Jeans Anisotropic Multi-Gaussian Expansion modeling to tracer stars before and after including binaries to recover the dynamical masses. The recovered total masses within the half-mass radius of tracers, M(< r half), are always inflated due to binary motions, with greater inflations occurring for smaller σ v r . However, many dwarf galaxies experience central density deflated due to binary motions, with little dependence on σ v r . This is due to the negative radial gradients in the velocity dispersion profiles, with the fractional inflation in σ v r due to binaries more significant in outskirts. An extreme binary fraction of 70% can lead to central density deflation of up to 10%–20% at 3 km s−1 < σ v r < 8 km s−1, with M( < r half) inflated by 4% at 9 km s−1 and up to 15% at 3 km s−1. A lower binary fraction of 36% leads to similar deflations, with the inflations decreasing to approximately 10% at 3 km s−1 and becoming statistically insignificant. The choice of binary orbit distribution models does not result in significant differences, and observational errors tend to slightly weaken the deflations in the recovered central density. Two observations separated by 1 yr to exclude binaries lead to almost zero inflations/deflations for a binary fraction of 36% over 3 km s−1 < σ v r < 9 km s−1. For σ v r 1 km s−1 to 3 km s−1, a binary fraction of 70% (36%) still results in 60% (30%) to 10% (1%) of inflations in M( < r half), even with two-epoch observation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3