Cosmic Sands. II. Challenges in Predicting and Measuring High-z Dust Temperatures

Author:

Lower SidneyORCID,Narayanan DesikaORCID,Hu Chia-YuORCID,Privon George C.ORCID

Abstract

Abstract In the current era of high-z galaxy discovery with JWST and the Atacama Large Millimeter/submillimeter Array, our ability to study the stellar populations and interstellar medium conditions in a diverse range of galaxies at Cosmic Dawn has rapidly improved. At the same time, the need to understand the current limitations in modeling galaxy formation processes and physical properties in order to interpret these observations is critical. Here, we study the challenges in modeling galaxy dust temperatures, both in the context of forward modeling galaxy spectral properties from a hydrodynamical simulation and via backwards modeling galaxy physical properties from mock observations of far-infrared dust emission. Using the simba model for galaxy formation combined with powderday radiative transfer, we can accurately predict the evolution of dust at high redshift, though several aspects of the model are essentially free parameters (dust composition, subresolution dust in star-forming regions) that dull the predictive power of the model dust temperature distributions. We also highlight the uncertainties in the backwards modeling methods, where we find the commonly used models and assumptions to fit far-infrared spectral energy distributions and infer dust temperatures (e.g., single temperature, optically thin modified blackbody) largely fail to capture the complexity of high-z dusty galaxies. We caution that conclusions inferred from both simulations—limited by resolution and post-processing techniques—and observations—limited by sparse data and simplistic model parameterizations—are susceptible to unique and nuanced uncertainties that can limit the usefulness of current high-z dust measurements.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3