First Observations of the Brown Dwarf HD 19467 B with JWST

Author:

Greenbaum Alexandra Z.ORCID,Llop-Sayson JorgeORCID,Lew Ben W.P.ORCID,Bryden GeoffreyORCID,Roellig Thomas L.,Ygouf MarieORCID,Fulton B. J.ORCID,Hey Daniel R.ORCID,Huber DanielORCID,Mukherjee SagnickORCID,Meyer MichaelORCID,Leisenring JarronORCID,Rieke MarciaORCID,Boyer MarthaORCID,Green Joseph J.,Kelly Doug,Misselt Karl,Serabyn Eugene,Stansberry John,Chu Laurie E. U.ORCID,De Furio MatthewORCID,Johnstone DougORCID,Schlieder Joshua E.,Beichman CharlesORCID

Abstract

Abstract We observed HD 19467 B with JWST’s NIRCam in six filters spanning 2.5–4.6 μm with the long-wavelength bar coronagraph. The brown dwarf HD 19467 B was initially identified through a long-period trend in the radial velocity of the G3V star HD 19467. HD 19467 B was subsequently detected via coronagraphic imaging and spectroscopy, and characterized as a late-T type brown dwarf with an approximate temperature ∼1000 K. We observed HD 19467 B as a part of the NIRCam GTO science program, demonstrating the first use of the NIRCam Long Wavelength Bar coronagraphic mask. The object was detected in all six filters (contrast levels of 2 × 10−4 to 2 × 10−5) at a separation of 1.″6 using angular differential imaging and synthetic reference differential imaging. Due to a guide star failure during the acquisition of a preselected reference star, no reference star data were available for post-processing. However, reference differential imaging was successfully applied using synthetic point-spread functions developed from contemporaneous maps of the telescope’s optical configuration. Additional radial velocity data (from Keck/HIRES) are used to constrain the orbit of HD 19467 B. Photometric data from TESS are used to constrain the properties of the host star, particularly its age. NIRCam photometry, spectra, and photometry from the literature, and improved stellar parameters are used in conjunction with recent spectral and evolutionary substellar models to derive the physical properties of HD 19467 B. Using an age of 9.4 ± 0.9 Gyr inferred from spectroscopy, Gaia astrometry, and TESS asteroseismology, we obtain a model-derived mass of 62 ± 1 M J, which is consistent within 2σ with the dynamically derived mass of 81 12 + 14 M J.

Funder

National Science Foundation

Research Corporation for Science Advancement

Alfred P. Sloan Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3