Collisions of Young Disk Galaxies in the Early Universe

Author:

Guo BeibeiORCID,Wu XufenORCID,Chen GuangwenORCID

Abstract

Abstract In the local universe, disk galaxies are generally well evolved and Toomre stable. Their collisions with satellite galaxies naturally produce ring structures, which have been observed and extensively studied. By contrast, at high redshifts, disk galaxies are still developing and clumpy. These young galaxies interact with each other more frequently. However, the products of their collisions remain elusive. Here, we systematically study the minor collisions between a clumpy galaxy and a satellite on orbits with different initial conditions, and find a new structure that is different from the local collisional ring galaxies. The clumpiness of the target galaxy is fine-tuned by the values of Toomre parameter, Q. Interestingly, a thick and knotty ring structure is formed without any sign of a central nucleus in the target galaxy. Our results provide a promising explanation of the empty ring galaxy recently observed in R5519 at redshift z = 2.19. Moreover, we show that the clumpy state of the collided galaxy exists for a much longer timescale compared to isolated self-evolved clumpy galaxies that have been widely investigated.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of collisional ring galaxies in Milgromian dynamics;Monthly Notices of the Royal Astronomical Society;2024-01-08

2. Do ultra diffuse galaxies with rich globular clusters systems have overly massive haloes?;Monthly Notices of the Royal Astronomical Society;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3