Extreme r-process Enhanced Stars at High Metallicity in Fornax*

Author:

Reichert M.ORCID,Hansen C. J.ORCID,Arcones A.ORCID

Abstract

Abstract We present and discuss three extremely r-process enhanced stars located in the massive dwarf spheroidal galaxy Fornax. These stars are very unique with an extreme Eu enrichment (1.25 ≤ [Eu/Fe]≤1.45) at high metallicities (−1.3 ≤ [Fe/H]≤−0.8). They have the largest Eu abundances ever observed in a dwarf galaxy opening new opportunities to further understand the origin of heavy elements formed by the r-process. We derive stellar abundances of Co, Zr, La, Ce, Pr, Nd, Er, and Lu using one-dimensional, local thermodynamic equilibrium codes and model atmospheres in conjunction with state-of-the art yield predictions. We derive Zr in the largest sample of stars (105) known to date in a dwarf galaxy. Accurate stellar abundances combined with a careful assessment of the yield predictions have revealed three metal-rich stars in Fornax showing a pure r-process pattern. We define a new class of stars, namely, Eu-stars, as r-II stars (i.e., [Eu/Fe] > 1) at high metallicities (i.e., [Fe/H] ≳ −1.5). The stellar abundance pattern contains Lu, observed for the first time in a dwarf galaxy, and reveals that a late burst of star formation has facilitated extreme r-process enhancement late in the galaxy’s history (<4 Gyr ago). Due to the large uncertainties associated with the nuclear physics input in the yield predictions, we cannot yet determine the r-process site leading to the three Eu-stars in Fornax. Our results demonstrate that extremely r-rich stars are not only associated with ultra-faint low-mass dwarf galaxies, but can be born also in massive dwarf galaxies.

Funder

EC ∣ European Research Council

Deutsche Forschungsgemeinschaft

European Cooperation in Science and Technology

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3