Abstract
Abstract
Active region EUV loops are believed to trace a subset of magnetic field lines through the corona. Malanushenko et al. proposed a method, using loop images and line-of-sight photospheric magnetograms, to infer the 3D shape and field strength along each loop. McCarthy et al. used this novel method to compute the total magnetic flux interconnecting a pair of active regions observed by SDO/AIA. They adopted the common assumption that each loop had a circular cross section. The accuracy of inferred shape and circularity of cross sections can both be tested using observations of the same loops from additional vantage points as provided by STEREO/EUVI. Here we use multiple viewing angles to confirm the 3D structure of loops. Of 151 viable cases, 105 (69.5%) matched some form of visible coronal structure when viewed approximately in quadrature. A loop with a circular cross section should appear of a similar width in different perspectives. In contradiction to this, we find a puzzling lack of correlation between loop diameters seen from different perspectives, even an anticorrelation in some cases. Features identified as monolithic loops in AIA may, in fact, be more complex density enhancements. The 30.5% of reconstructions from AIA that did not match any feature in EUVI might be such enhancements. Others may be genuine loop structures, but with elliptical cross sections. We observe an anticorrelation between diameter and brightness, lending support to the latter hypothesis. Of 13 loops suitable for width analysis, 4 are consistent with noncircular cross sections, where we find anticorrelation in both comparisons.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献