Magnetohydrodynamical Torsional Oscillations from Thermoresistive Instability in Hot Jupiters

Author:

Hardy RaphaëlORCID,Charbonneau PaulORCID,Cumming AndrewORCID

Abstract

Abstract Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3