Analysis of BMR Tilt from AutoTAB Catalog: Hinting toward the Thin Flux Tube Model?

Author:

Sreedevi AnuORCID,Jha Bibhuti KumarORCID,Karak Bidya BinayORCID,Banerjee DipankarORCID

Abstract

Abstract One of the intriguing mechanisms of the Sun is the formation of bipolar magnetic regions (BMRs) in the solar convection zone (CZ), which are observed as regions of concentrated magnetic fields of opposite polarity on the photosphere. These BMRs are tilted with respect to the equatorial line, which statistically increases with latitude. The thin flux tube model, employing the rise of magnetically buoyant flux loops and their twist by Coriolis force, is a popular paradigm for explaining the formation of tilted BMRs. In this study, we assess the validity of the thin flux tube model by analyzing the tracked BMR data obtained through the Automatic Tracking Algorithm for BMRs. Our observations reveal that the tracked BMRs exhibit the expected collective behaviors. We find that the polarity separation of BMRs increases over their normalized lifetime, supporting the assumption of a rising flux tube from the CZ. Moreover, we observe an increasing trend of the tilt with the flux of the BMR, suggesting that rising flux tubes associated with lower flux regions are primarily influenced by drag force and Coriolis force, while in higher flux regions, magnetic buoyancy dominates. Furthermore, we observe Joy’s law dependence for emerging BMRs from their first detection, indicating that at least a portion of the tilt observed in BMRs can be attributed to the Coriolis force. Notably, lower flux regions exhibit a higher amount of fluctuations associated with their tilt measurement compared to stronger flux regions, suggesting that lower flux regions are more susceptible to turbulent convection.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3