Large Myr-old Disks Are Not Severely Depleted of Gas-phase CO or Carbon

Author:

Pascucci IlariaORCID,Skinner Bennett N.ORCID,Deng DingshanORCID,Ruaud MaximeORCID,Gorti UmaORCID,Schwarz Kamber R.ORCID,Chapillon Edwige,Vioque MiguelORCID,Miley JamesORCID

Abstract

Abstract We present an ACA search for [C i] 1–0 emission at 492 GHz toward large T Tauri disks (gas radii ≳ 200 au) in the ∼1–3 Myr-old Lupus star-forming region. Combined with Atacama Large Millimeter/submillimeter Array 12 m archival data for IM Lup, we report [C i] 1–0 detections in six out of 10 sources, thus doubling the known detections toward T Tauri disks. We also identify four Keplerian double-peaked profiles and demonstrate that the [C i] 1–0 fluxes correlate with 13CO, C18O, and 12CO(2–1) fluxes, as well as with the gas disk outer radius measured from the latter transition. These findings are in line with the expectation that atomic carbon traces the disk surface. In addition, we compare the carbon and carbon monoxide (CO) line luminosities of a Lupus and literature sample with [C i] 1–0 detections with predictions from the self-consistent disk thermo-chemical models of Ruaud et al. These models adopt interstellar medium carbon and oxygen elemental abundances as input parameters. With the exception of the disk around Sz 98, we find that these models reproduce all the available line luminosities and upper limits, with gas masses comparable to or higher than the minimum-mass solar nebula and gas-to-dust mass ratios ≥10. Thus, we conclude that the majority of large Myr-old disks conform to the simple expectation that they are not significantly depleted in gas, CO, or carbon.

Funder

NASA ∣ SMD ∣ Astrophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CI Traces the Disk Atmosphere in the IM Lup Protoplanetary Disk;The Astrophysical Journal Letters;2023-12-01

2. DiskMINT: A Tool to Estimate Disk Masses with CO Isotopologues;The Astrophysical Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3