Interstellar Objects Follow the Collapse of Molecular Clouds

Author:

Pfalzner SusanneORCID,Paterson DylanORCID,Bannister Michele T.ORCID,Zwart Simon Portegies

Abstract

Abstract Interstellar objects (ISOs), the parent population of 1i/‘Oumuamua and 2i/Borisov, are abundant in the interstellar medium of the Milky Way. This means that the interstellar medium, including molecular-cloud regions, has three components: gas, dust, and ISOs. From observational constraints of the field density of ISOs drifting in the solar neighborhood, we infer that a typical molecular cloud of 10 pc diameter contains some 1018 ISOs. At typical sizes ranging from hundreds of meters to tens of kilometers, ISOs are entirely decoupled from the gas dynamics in these molecular clouds. Here we address the question of whether ISOs can follow the collapse of molecular clouds. We perform low-resolution simulations of the collapse of molecular clouds containing initially static ISO populations toward the point where stars form. In this proof-of-principle study, we find that the interstellar objects definitely follow the collapse of the gas—and many become bound to the new-forming numerical approximations to future stars (sinks). At minimum, 40% of all sinks have one or more ISO test particles gravitationally bound to them for the initial ISO distributions tested here. This value corresponds to at least 1010 actual ISOs being bound after three initial freefall times. Thus, ISOs are a relevant component of star formation. We find that more massive sinks bind disproportionately large fractions of the initial ISO population, implying competitive capture of ISOs. Sinks can also be solitary, as their ISOs can become unbound again—particularly if sinks are ejected from the system. Emerging planetary systems will thus develop in remarkably varied environments, ranging from solitary to richly populated with bound ISOs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of aeolian erosion on dust evolution in protoplanetary discs;Astronomy & Astrophysics;2024-05-28

2. Physical Considerations for an Intercept Mission to a 1I/’Oumuamua-Like Interstellar Object;Journal of Astronomical Instrumentation;2023-04-22

3. Interstellar objects;Contemporary Physics;2022-07-03

4. Eccentricity evolution in gaseous dynamical friction;Monthly Notices of the Royal Astronomical Society;2022-05-11

5. Interstellar Planetesimals: Potential Seeds for Planet Formation?;The Astrophysical Journal;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3