The Discovery of the Faintest Known Milky Way Satellite Using UNIONS

Author:

Smith Simon E. T.ORCID,Cerny WilliamORCID,Hayes Christian R.ORCID,Sestito FedericoORCID,Jensen JaclynORCID,McConnachie Alan W.ORCID,Geha MarlaORCID,Navarro Julio F.ORCID,Li Ting S.ORCID,Cuillandre Jean-CharlesORCID,Errani Raphaël,Chambers KenORCID,Gwyn StephenORCID,Hammer FrancoisORCID,Hudson Michael J.ORCID,Magnier EugeneORCID,Martin NicolasORCID

Abstract

Abstract We present the discovery of Ursa Major III/UNIONS 1, the least luminous known satellite of the Milky Way, which is estimated to have an absolute V-band magnitude of + 2.2 0.3 + 0.4 mag, equivalent to a total stellar mass of 16 5 + 6 M . Ursa Major III/UNIONS 1 was uncovered in the deep, wide-field Ultraviolet Near Infrared Optical Northern Survey (UNIONS) and is consistent with an old (τ > 11 Gyr), metal-poor ([Fe/H] ∼ −2.2) stellar population at a heliocentric distance of ∼10 kpc. Despite its being compact (r h = 3 ± 1 pc) and composed of few stars, we confirm the reality of Ursa Major III/UNIONS 1 with Keck II/DEIMOS follow-up spectroscopy and identify 11 radial velocity members, eight of which have full astrometric data from Gaia and are co-moving based on their proper motions. Based on these 11 radial velocity members, we derive an intrinsic velocity dispersion of 3.7 1.0 + 1.4 km s−1 but some caveats preclude this value from being interpreted as a direct indicator of the underlying gravitational potential at this time. Primarily, the exclusion of the largest velocity outlier from the member list drops the velocity dispersion to 1.9 1.1 + 1.4 km s−1, and the subsequent removal of an additional outlier star produces an unresolved velocity dispersion. While the presence of binary stars may be inflating the measurement, the possibility of a significant velocity dispersion makes Ursa Major III/UNIONS 1 a high-priority candidate for multi-epoch spectroscopic follow-ups to deduce the true nature of this incredibly faint satellite.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3