Abstract
Abstract
The afterglow of GRB 190114C has been observed at 60–1200 s after the burst in the sub-TeV range by the MAGIC Cerenkov telescope. The simultaneous observations in the X-ray range, which is presumed to be of synchrotron origin, and in the sub-TeV range, where the emission is presumed to be inverse Compton, provide new stringent constraints on the conditions within the emitting regions and their evolution in time. While the additional data contain a lot of new information, it turns out that fitting both the X-ray and the TeV emission is much more complicated than what was originally anticipated. We find that optical flux measurements provide important complementary information that, in combination with TeV measurements, breaks degeneracy in the parameter space. We present here a numerical fit to the multiwavelength observed spectrum using a new code that calculates the single-zone synchrotron including self-Compton emission, taking into account the exact Klein–Nishina cross sections, as well as pair production via absorption of the high-energy photons inside the emitting zone and the emission from the resulting secondary pairs. We also present a revised set of single-zone parameters and a method for fitting the data to the observations. Our model for GRB 190114C that fits all the observations, from the optical data point to the sub-TeV range, suggests that it is in the fast-cooling regime. The inferred parameters for observations at two separate moments of time show significant deviations from some of the common expectations in afterglow modeling but are all consistent with the predictions of the pair-balance model.
Funder
Russian Science Foundation
EC ∣ European Research Council
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献