Supercritical Growth Pathway to Overmassive Black Holes at Cosmic Dawn: Coevolution with Massive Quasar Hosts

Author:

Hu HaojieORCID,Inayoshi KoheiORCID,Haiman ZoltánORCID,Li WenxiuORCID,Quataert EliotORCID,Kuiper RolfORCID

Abstract

Abstract Observations of the most luminous quasars at high redshifts (z > 6) have revealed that the largest supermassive black holes (SMBHs) at those epochs tend to be substantially overmassive relative to their host galaxies compared to the local relations, suggesting they experienced rapid early growth phases. We propose an assembly model for the SMBHs that end up in rare massive ∼1012 M host halos at z ∼ 6–7, applying a kinetic feedback prescription for BHs accreting above the Eddington rate, provided by radiation hydrodynamic simulations for the long-term evolution of the accretion-flow structure. The large inflow rates into these halos during their assembly enable the formation of >109 M SMBHs by z ∼ 6, even starting from stellar-mass seeds at z ∼ 30, and even in the presence of outflows that reduce the BH feeding rate, especially at early times. This mechanism also naturally yields a high BH-to-galaxy mass ratio of >0.01 before the SMBH mass reaches M BH > 109 M by z ∼ 6. These fast-growing SMBH progenitors are bright enough to be detected by upcoming observations with the James Webb Space Telescope over a wide range of redshift (7 < z < 15), regardless of how they were seeded.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3