TESS Stellar Rotation up to 80 Days in the Southern Continuous Viewing Zone

Author:

Claytor Zachary R.ORCID,van Saders Jennifer L.ORCID,Cao LyraORCID,Pinsonneault Marc H.ORCID,Teske JohannaORCID,Beaton Rachael L.ORCID

Abstract

Abstract The Transiting Exoplanet Survey Satellite (TESS) mission delivers time-series photometry for millions of stars across the sky, offering a probe into stellar astrophysics, including rotation, on a population scale. However, light-curve systematics related to the satellite’s 13.7 day orbit have prevented stellar rotation searches for periods longer than 13 days, putting the majority of stars beyond reach. Machine-learning methods have the ability to identify systematics and recover robust signals, enabling us to recover rotation periods up to 35 days for GK dwarfs and 80 days for M dwarfs. We present a catalog of 7245 rotation periods for cool dwarfs in the Southern Continuous Viewing Zone, estimated using convolutional neural networks. We find evidence for structure in the period distribution consistent with prior Kepler and K2 results, including a gap in 10–20 day cool-star periods thought to arise from a change in stellar spin-down or activity. Using a combination of spectroscopic and gyrochronologic constraints, we fit stellar evolution models to estimate masses and ages for stars with rotation periods. We find strong correlations between the detectability of rotation in TESS and the effective temperature, age, and metallicity of the stars. Finally, we investigate the relationships between rotation and newly obtained spot filling fractions estimated from Apache Point Observatory Galactic Evolution Experiment spectra. Field starspot filling fractions are elevated in the same temperature and period regime where open clusters’ magnetic braking stalls, lending support to an internal shear mechanism that can produce both phenomena.

Funder

NASA ∣ SMD ∣ Astrophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3