Abstract
Abstract
A significant fraction of supernovae show signatures of dense circumstellar material (CSM). While multiple scenarios for creating a dense CSM exist, mass eruption due to injection of energy at the base of the outer envelope is a likely possibility. We carry out radiation hydrodynamical simulations of eruptive mass loss from a typical red supergiant progenitor with an initial mass of 15 M
⊙, for the first time focusing on the timescale of the injection as well as energy. We find that not only sufficient injection energy but also sufficient rate of energy injection per unit time, L
min ∼ 8 × 1040 erg s−1 in this particular model, is required for eruption of unbound CSM. This result suggests that the energy injection rate needs to be greater than the binding energy of the envelope divided by the dynamical timescale for the eruption. The density profile of the resulting CSM, whose shape was analytically and numerically predicted in the limit of instantaneous energy injection, similarly holds for a finite injection timescale. We discuss our findings in the framework of proposed mass outburst scenarios, specifically wave-driven outbursts and common-envelope ejection.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献