Multiwavelength Observations of Sgr A*. I. 2019 July 18

Author:

Michail Joseph M.ORCID,Wardle MarkORCID,Yusef-Zadeh Farhad,Kunneriath DevakyORCID

Abstract

Abstract We present and analyze ALMA submillimeter observations from a multiwavelength campaign of Sgr A* during 2019 July 18. In addition to the submillimeter, we utilize concurrent mid-infrared (mid-IR; Spitzer) and X-ray (Chandra) observations. The submillimeter emission lags less than δ t ≈ 30 minutes behind the mid-IR data. However, the entire submillimeter flare was not observed, raising the possibility that the time delay is a consequence of incomplete sampling of the light curve. The decay of the submillimeter emission is not consistent with synchrotron cooling. Therefore, we analyze these data adopting an adiabatically expanding synchrotron source that is initially optically thick or thin in the submillimeter, yielding time-delayed or synchronous flaring with the IR, respectively. The time-delayed model is consistent with a plasma blob of radius 0.8 R S (Schwarzschild radius), electron power-law index p = 3.5 (N(E) ∝ E p ), equipartition magnetic field of B eq ≈ 90 Gauss, and expansion velocity v exp 0.004 c . The simultaneous emission is fit by a plasma blob of radius 2 R S, p = 2.5, B eq ≈ 27 Gauss, and v exp 0.014 c . Since the submillimeter time delay is not completely unambiguous, we cannot definitively conclude which model better represents the data. This observation presents the best evidence for a unified flaring mechanism between submillimeter and X-ray wavelengths and places significant constraints on the source size and magnetic field strength. We show that concurrent observations at lower frequencies would be able to determine if the flaring emission is initially optically thick or thin in the submillimeter.

Funder

National Science Foundation

National Radio Astronomy Observatory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3