Statistical Study of the Star Formation Efficiency in Bars: Is Star Formation Suppressed in Gas-rich Bars?

Author:

Maeda FumiyaORCID,Egusa FumiORCID,Ohta KoujiORCID,Fujimoto YusukeORCID,Habe Asao

Abstract

Abstract The dependence of the star formation efficiency (SFE) on galactic structures—especially whether the SFE in the bar region is lower than those in other regions—has recently been debated. We report the SFEs of 18 nearby gas-rich massive star-forming barred galaxies with large apparent bar major axes (≧75″). We statistically measure the SFE by distinguishing the center, the bar end, and the bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data by assuming a constant CO-to-H2 conversion factor (α CO), and the star formation rate surface density is derived from a linear combination of far-UV and mid-IR intensities. The angular resolution is 15″, which corresponds to 0.3–1.8 kpc. We find that the ratio of the SFE in the bar to that in the disk was systematically lower than unity (typically 0.6–0.8), which means that the star formation in the bar is systematically suppressed. Our results are inconsistent with similar recent statistical studies, which have reported that the SFE tends to be independent of galactic structures. This inconsistency can be attributed to the differences in the definitions of the bar region, the spatial resolutions, the α CO, and the sample galaxies. Furthermore, we find a negative correlation between the SFE and the velocity width of the CO spectrum, which is consistent with the idea that the large dynamical effects—such as strong shocks, large shears, and fast cloud–cloud collisions caused by the noncircular motion of the bar—result in a low SFE.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3