BASS XXXVII: The Role of Radiative Feedback in the Growth and Obscuration Properties of Nearby Supermassive Black Holes

Author:

Ricci C.ORCID,Ananna T. T.ORCID,Temple M. J.ORCID,Urry C. M.ORCID,Koss M. J.ORCID,Trakhtenbrot B.ORCID,Ueda Y.ORCID,Stern D.ORCID,Bauer F. E.ORCID,Treister E.ORCID,Privon G. C.ORCID,Oh K.ORCID,Paltani S.,Stalevski M.ORCID,Ho L. C.ORCID,Fabian A. C.ORCID,Mushotzky R.ORCID,Chang C. S.ORCID,Ricci F.,Kakkad D.,Sartori L.ORCID,Baer R.ORCID,Caglar T.ORCID,Powell M.ORCID,Harrison F.

Abstract

Abstract We study the relation between obscuration and supermassive black hole (SMBH) accretion using a large sample of hard X-ray selected active galactic nuclei (AGNs). We find a strong decrease in the fraction of obscured sources above the Eddington limit for dusty gas ( log λ Edd 2 ) confirming earlier results, and consistent with the radiation-regulated unification model. This also explains the difference in the Eddington ratio distribution functions (ERDFs) of type 1 and type 2 AGNs obtained by a recent study. The break in the ERDF of nearby AGNs is at log λ Edd * = 1.34 ± 0.07 . This corresponds to the λ Edd where AGNs transition from having most of their sky covered by obscuring material to being mostly devoid of absorbing material. A similar trend is observed for the luminosity function, which implies that most of the SMBH growth in the local universe happens when the AGN is covered by a large reservoir of gas and dust. These results could be explained with a radiation-regulated growth model, in which AGNs move in the N Hλ Edd plane during their life cycle. The growth episode starts with the AGN mostly unobscured and accreting at low λ Edd. As the SMBH is further fueled, λ Edd, N H and the covering factor increase, leading the AGN to be preferentially observed as obscured. Once λ Edd reaches the Eddington limit for dusty gas, the covering factor and N H rapidly decrease, leading the AGN to be typically observed as unobscured. As the remaining fuel is depleted, the SMBH goes back into a quiescent phase.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3