Are Type Ia Supernovae in Rest-frame H Brighter in More Massive Galaxies?

Author:

Ponder Kara A.ORCID,Wood-Vasey W. MichaelORCID,Weyant Anja,Barton Nathan T.,Galbany LluísORCID,Liu Shu,Garnavich PeterORCID,Matheson ThomasORCID

Abstract

Abstract We analyze 143 Type Ia supernovae (SNe Ia) observed in H band (1.6–1.8 μm) and find that SNe Ia are intrinsically brighter in H band with increasing host galaxy stellar mass. We find that SNe Ia in galaxies more massive than 1010.43 M are 0.13 ± 0.04 mag brighter in H than SNe Ia in less massive galaxies. The same set of SNe Ia observed at optical wavelengths, after width–color–luminosity corrections, exhibit a 0.10 ± 0.03 mag offset in the Hubble residuals. We observe an outlier population ( Δ H max > 0.5 mag) in the H band and show that removing the outlier population moves the mass threshold to 1010.65 M and reduces the step in H band to 0.08 ± 0.04 mag, but the equivalent optical mass step is increased to 0.13 ± 0.04 mag. We conclude that the outliers do not drive the brightness–host-mass correlation. Less massive galaxies preferentially host more higher-stretch SNe Ia, which are intrinsically brighter and bluer. It is only after correction for width–luminosity and color–luminosity relationships that SNe Ia have brighter optical Hubble residuals in more massive galaxies. Thus, finding that SNe Ia are intrinsically brighter in H in more massive galaxies is an opposite correlation to the intrinsic (pre-width–luminosity correction) optical brightness. If dust and the treatment of intrinsic color variation were the main driver of the host galaxy mass correlation, we would not expect a correlation of brighter H-band SNe Ia in more massive galaxies.

Funder

U.S. National Science Foundation

U.S. Department of Energy

European Union’s Horizon 2020

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3