Post-merger Gravitational-wave Signal from Neutron-star Binaries: A New Look at an Old Problem

Author:

Topolski KonradORCID,Tootle Samuel D.ORCID,Rezzolla LucianoORCID

Abstract

Abstract The spectral properties of the post-merger gravitational-wave signal from a binary of neutron stars encodes a variety of information about the features of the system and of the equation of state describing matter around and above nuclear saturation density. Characterizing the properties of such a signal is an “old” problem, which first emerged when a number of frequencies were shown to be related to the properties of the binary through “quasi-universal” relations. Here we take a new look at this old problem by computing the properties of the signal in terms of the Weyl scalar ψ 4. In this way, and using a database of more than 100 simulations, we provide the first evidence for a new instantaneous frequency, f 0 ψ 4 , associated with the instant of quasi-time-symmetry in the dynamics, and which also follows a quasi-universal relation. We also derive a new quasi-universal relation for the merger frequency f mer h , which provides a description of the data that is 4 times more accurate than previous expressions while requiring fewer fitting coefficients. Finally, consistent with the findings of numerous studies before ours, and using an enlarged ensemble of binary systems, we point out that the = 2, m = 1 gravitational-wave mode could become comparable with the traditional = 2, m = 2 mode on sufficiently long timescales, with strain amplitudes in a ratio ∣h 21∣/∣h 22∣ ∼ 0.1–1 under generic orientations of the binary, which could be measured by present detectors for signals with a large signal-to-noise ratio or by third-generation detectors for generic signals should no collapse occur.

Funder

State of Hesse - ELEMENTS

ERC Advanced Grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3