Constraining the Existence of Axion Clouds in M87* with Closure Trace Analyses

Author:

Wang ZhirenORCID,Broderick Avery E.ORCID

Abstract

Abstract Black holes can amplify incoming bosonic waves via rotational superradiance, inducing bound states of ultralight bosons around them. This phenomenon has the potential to confine the parameter spaces of new bosons. Axions and axion-like particles (ALPs) are candidate beyond-standard-model particles that can form such clouds around supermassive black holes (SMBHs) and impact the polarization signal in a similar fashion to Faraday rotation via axion–photon coupling. Prior efforts have used polarized images from the Event Horizon Telescope (EHT) M87 2017 observations to limit the dimensionless axion–photon coupling to previously unexplored regions. However, with the novel calibration-insensitive quantities, closure traces, and conjugate closure trace products, it is possible to constrain the existence of axion clouds while avoiding the dominant sources of systematic uncertainties, e.g., station gains and polarization leakages. We utilize a simple geometric model for the polarization map of M87* to fit the model parameters with both simulated and real data sets and reach a comparable level of constraint in the accuracy with which an axion cloud may be excluded in M87. Future applications of our approach include subsequent M87* and Sgr A* observations by EHT and the next-generation EHT that are expected to produce stronger constraints across a wider range of axion and ALP masses. Because it does not require imaging, closure trace analyses may be applied to target active galactic nuclei for which imaging is marginal, extending the number of SMBHs from which axion limits may be obtained significantly.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3