Virial Halo Mass Function in the Planck Cosmology

Author:

Shirasaki MasatoORCID,Ishiyama Tomoaki,Ando Shin’ichiroORCID

Abstract

Abstract We study halo mass functions with high-resolution N-body simulations under a ΛCDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the Planck satellite. We calibrate the halo mass functions for 108.5M vir/(h −1 M ) ≲ 1015.0–0.45 z , where M vir is the virial spherical-overdensity mass and redshift z ranges from 0 to 7. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision, except for the highest masses at z ≤ 7. Our model predicts that the analytic prediction in Sheth & Tormen would overestimate the halo abundance at z = 6 with M vir = 108.5–10 h −1 M by 20%–30%. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-z galaxy number counts. We compare a cumulative luminosity function of galaxies at z = 6 with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than 2.71 keV is incompatible with the observed galaxy number density at a 2σ confidence level.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the bright end of the UV luminosity functions of galaxies at z ∼ 0.6–1.2;Monthly Notices of the Royal Astronomical Society;2024-05-13

2. Cosmological Test of an Ultraviolet Origin of Dark Energy;Universe;2024-04-25

3. Quantifying the Tension between Cosmological Models and JWST Red Candidate Massive Galaxies;Research in Astronomy and Astrophysics;2024-03-19

4. Distinguishing thermal histories of dark matter from structure formation;Journal of Cosmology and Astroparticle Physics;2024-01-01

5. The cluster mass function and the σ8 tension;Monthly Notices of the Royal Astronomical Society;2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3