The Structure Function of Mid-infrared Variability in Low-redshift Active Galactic Nuclei

Author:

Son SuyeonORCID,Kim MinjinORCID,Ho Luis C.ORCID

Abstract

Abstract Using the multi-epoch mid-infrared (MIR) photometry from the Wide-field Infrared Survey Explorer spanning a baseline of ∼10 yr, we extensively investigate the MIR variability of nearby active galactic nuclei (AGNs) at 0.15 < z < 0.4. We find that the ensemble structure function in the W1 band (3.4 μm) can be modeled with a broken power law. Type 1 AGNs tend to exhibit larger variability amplitudes than type 2 AGNs, possibly due to the extinction by the torus. The variability amplitude is inversely correlated with the AGN luminosity, consistent with a similar relation known in the optical. Meanwhile, the slope of the power law increases with AGN luminosity. This trend can be attributed to the fact that the inner radius of the torus is proportional to the AGN luminosity, as expected from the size−luminosity relation of the torus. Interestingly, low-luminosity type 2 AGNs, unlike low-luminosity type 1 AGNs, tend to exhibit smaller variability amplitude than do high-luminosity AGNs. We argue that either low-luminosity type 2 AGNs have distinctive central structures due to their low luminosity or their MIR brightness is contaminated by emission from the cold dust in the host galaxy. Our findings suggest that the AGN unification scheme may need to be revised. We find that the variability amplitude of dust-deficient AGNs is systematically larger than that of normal AGNs, supporting the notion that the hot and warm dust in dust-deficient AGNs may be destroyed and reformed according to the strength of the ultraviolet radiation from the accretion disk.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3